library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## ✓ tibble 3.1.4 ✓ dplyr 1.0.7
## ✓ tidyr 1.1.3 ✓ stringr 1.4.0
## ✓ readr 2.0.1 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(dplyr)
library(p8105.datasets)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
barplot
data("rest_inspec")
rest_inspec =
rest_inspec %>%
select(boro,street ,inspection_type,building, score) %>%
drop_na() %>%
filter(
boro== "MANHATTAN",
inspection_type == "Cycle Inspection / Initial Inspection",
score %in% 35:45
)
rest_inspec %>%
count(street) %>%
mutate(street = fct_reorder(street, n)) %>%
plot_ly(x = ~street, y = ~n, color = ~street, type = "bar", colors = "viridis")
boxplot
rest_inspec %>%
mutate(street = fct_reorder(street, score)) %>%
plot_ly(y = ~score, color = ~street, type = "box", colors = "viridis")
density plot
density_ggplot =
rest_inspec %>%
select(boro,street ,inspection_type, building,score) %>%
drop_na() %>%
filter(
boro== "MANHATTAN",
inspection_type == "Cycle Inspection / Initial Inspection",
score %in% 35:45,
building %in% 0:2000
) %>%
filter(
street %in% c(
"10 AVENUE",
"7 AVENUE",
"8 AVENUE",
"WEST 35 STREET",
"W 32ND ST",
"BROADWAY",
"west 34th st",
"5 AVENUE",
"7 AVENUE",
"8TH AVE",
"9 AVENUE"
)) %>%
ggplot(aes(x = street, fill = building ),colors = "viridis") +
geom_density(alpha = 0.25)
ggplotly(density_ggplot)